Bonds & Stock Market (2/15/2011)

Econ 310-008

Equations

• $i_{nt} = (i_t + i_{t+1}^e + i_{t+2}^e + ... + i_{t+(n-1)}^e)/n$ • $i_{nt} = (i_t + i_{t+1}^e + i_{t+2}^e + ... + i_{t+(n-1)}^e)/n + I_{nt}$

• $p_0 = D_1/(1 + k_e) + p_1/(1 + k_e)$

• $p_0 = D_1/(1 + k_e)^1 + D_2/(1 + k_e)^2 + ...$

 $+ D_n/(1 + k_e)^n + p_n^e/(1 + k_e)^n$

o fundamentals: $D_1/(1 + k_e)^1 + ... + D_n/(1 + k_e)^n$

o bubble: $p_n^e/(1 + k_e)^n$

• $p_0 = \sum D_t / (1 + k_e)^t$

• $p_0 = D_0(1+g)^1/(1+k_e)^1 + D_0(1+g)^2/(1+k_e)^2 + ... + D_0(1+g)^\infty/(1+k_e)^\infty$

• $p_0 = D_0(1+g)/(k_e-g) = D_1/(k_e-g)$

Expectations formula

Liquidity premium formula

One-Period Stock Valuation Model

Dividend Valuation Model

Dividend Valuation Model without final sale

Gordon Growth Model

Gordon Growth Model (simplified)

Definitions

- *risk structure of interest rates* the relationship among the interest rates on various bonds with the same term to maturity
- **term structure of interest rates** the relationship among the interest rates on various bonds with different terms to maturity
- default party issuing debt instrument is unable to make interest payments or pay off the amount owed at maturity
- *default-free bonds* bonds with no default risk
- risk premium interest rate spread between bonds with default risk and default-free bonds
- **yield curve** plot of the yields of bonds with differing terms to maturity but the same risk structure (risk, liquidity, and tax considerations)
- *inverted yield curve* downward sloping yield curve
- **expectations theory** the interest rate of a long-term bond will equal the average of short-term interest rates people expect over the life of the long-term bond
 - Assumption: Bonds of different maturities are perfect substitutes.
 - o Implication: Re on bonds of different maturities are equal.
- **segmented markets theory** markets for different maturity bonds are completely separate; interest rates are determined by supply and demand for that bond only
 - o Assumption: Bonds of different maturities are not substitutes.
 - o Implication: Interest rate at each maturity determined seperately.
- *liquidity premium theory* the interest rate of a long-term bond will equal the average of short-term interest rates people expect over the life of the long-term bond plus a liquidity premium
 - o Assumption: Bonds of different maturities are substitutes, but not perfect substitutes.
 - o Implication: Modifies expectations theory with features of segmented markets theory.
- adaptive expectations expectations are formed from past experience only
- rational expectations expectations will be identical to optimal forecasts (the best guess of the future)
 using all available information
- arbitrage market participants eliminate unexploited profit opportunities
- *efficient market hypothesis* applies rational expectations to financial markets; stock prices reflect all available information
 - o weak form stock prices reflect past stock price history
 - o semi-strong form stock prices reflect all publicly available information
 - o strong form stock prices reflect all information (public and insider)

Variable definitions

- $i_t \equiv$ interest rate on one-period bond
- $i_{t+1}^e \equiv$ expected interest rate on one-period bond next period
- $i_{2t} \equiv \text{interest rate on two-period bond}$
- $I_{nt} \equiv Iiquidity premium for n-period bond at time t$
- $p_0 \equiv \text{current price of stock}$
- $D_1 \equiv \text{dividend paid for year 1}$
- $k_e \equiv$ required return in equity
- $p_1 \equiv$ stock price at the end of year 1
- $D_0 \equiv \text{most recent dividend paid}$
- $g \equiv$ expected constant growth rate

Principles

- Government bonds are not necessarily default-free.
- Default risk, liquidity, & tax treatment are relative to alternative assets.
- A bond with a default risk will always have a positive risk premium.
- Credit rating agencies rate the quality of bonds by probability of default (AAA default less than CCC).
- Junk bonds often facilitated leveraged buyouts, increasing firm productivity.
- Income from municipal bonds is not taxed by the federal government due to state sovereignty reasons.
- Int always positive, rises with maturity.
- Current stock values are the present discounted value of future dividends.
- Market price is set by the buyer willing to pay the most (buyer who can make best use of the asset).
- Superior information about an asset can increase its value by reducing its perceived risk.
- When new information is released about a firm, expectations and prices change.
- Rational expectations assumes agents use the same model as the researcher ("model-consistent").
- In rational expectations people can make mistakes, but they do not make systematic forecasting errors.
- Arbitrage is the mechanism tending toward the efficient market hypothesis.
- Efficient market holds even if there are some uninformed, irrational participants.

Risk structure factors

- default risk: risk_B $\uparrow \rightarrow B^D \downarrow \rightarrow P_B \downarrow$
- liquidity: liquidity_B $\downarrow \rightarrow B^D \downarrow \rightarrow P_B \downarrow$
- income tax: $tax_B \downarrow \rightarrow B^D \uparrow \rightarrow P_B \uparrow$

Term structure empirical facts

- 1. interest rates on bonds of different maturities move together over time
- low short-term interest rates usually mean upward sloping yield curves; high shortterm interest rates usually mean downward sloping yield curves
- 3. yield curves almost always slope upward

Term structure theories

- expectations theory: explains 1 & 2, not 3
- segmented markets theory: explains 3, not 1 & 2
- liquidity premium theory: explains 1, 2, & 3

Setting prices

- uncertainty $\uparrow \rightarrow k_e \uparrow \rightarrow p_0 \downarrow$
- economy growth $\uparrow \rightarrow g \uparrow \rightarrow p_0 \uparrow$
- dividends $\uparrow \rightarrow D_0 \uparrow \rightarrow p_0 \uparrow$

<u>Favorable evidence – efficient market hypothesis</u>

- Investment analysts and mutual funds don't beat the market
- Anticipated announcements don't affect stock price
- Stock prices close to random walk
- Technical analysis doesn't outperform market

<u>Unfavorable evidence – efficient market hypothesis</u>

- Small-firm effect: small firms have abnormally high returns
- January effect: high returns in January
- Market overreaction
- Excessive volatility
- Mean reversion
- New information is not always immediately incorporated into prices

<u>Implications – efficient market hypothesis</u>

- Published reports of financial analysts not very valuable
- Should be skeptical of hot tips
- Stock prices may fall on good news
- Prescription for investor
 - o Shouldn't try to outguess market
 - o Buy and hold
 - o Diversify with no-load mutual fund

Missed part of past notes:

normal inflation

hyperinflation